Effect of single-stranded DNA-binding proteins on the helicase and primase activities of the bacteriophage T7 gene 4 protein.
نویسندگان
چکیده
Gene 4 protein (gp4) of bacteriophage T7 provides two essential functions at the T7 replication fork, primase and helicase activities. Previous studies have shown that the single-stranded DNA-binding protein of T7, encoded by gene 2.5, interacts with gp4 and modulates its multiple functions. To further characterize the interactions between gp4 and gene 2.5 protein (gp2.5), we have examined the effect of wild-type and altered gene 2.5 proteins as well as Escherichia coli single-stranded DNA-binding (SSB) protein on the ability of gp4 to synthesize primers, hydrolyze dTTP, and unwind duplex DNA. Wild-type gp2.5 and E. coli SSB protein stimulate primer synthesis and DNA-unwinding activities of gp4 at low concentrations but do not significantly affect single-stranded DNA-dependent hydrolysis of dTTP. Neither protein inhibits the binding of gp4 to single-stranded DNA. The variant gene 2.5 proteins, gp2.5-F232L and gp2.5-Delta26C, inhibit primase, dTTPase, and helicase activities proportional to their increased affinities for DNA. Interestingly, wild-type gp2.5 stimulates the unwinding activity of gp4 except at very high concentrations, whereas E. coli SSB protein is highly inhibitory at relative low concentrations.
منابع مشابه
The nucleotide binding site of the helicase/primase of bacteriophage T7. Interaction of mutant and wild-type proteins.
The helicase and primase activities of bacteriophage T7 are distributed between the 56- and 63-kDa gene 4 proteins. The 63-kDa protein catalyzes both helicase and primase activities. The 56-kDa gene 4 protein lacks the 63 amino acids at the N terminus of the colinear 63-kDa protein and catalyzes only helicase activity. Helicase activity is dependent on the hydrolysis of a nucleoside 5'-triphosp...
متن کاملOligomeric structure of bacteriophage T7 DNA primase/helicase proteins.
The oligomeric structure of bacteriophage T7 gene 4 helicase/primase proteins was investigated using protein cross-linking and high pressure gel-filtration chromatography. Studies were carried out with both 4A' and 4B proteins. 4A' is a M64L mutant of 4A which has similar helicase and primase activities as the wild-type mixture of 4A and 4B proteins (Patel, S. S., Rosenberg, A. H., Studier, F. ...
متن کاملStructure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7.
The gene 2.5 protein (gp2.5) of bacteriophage T7 is a single-stranded DNA (ssDNA) binding protein that has essential roles in DNA replication and recombination. In addition to binding DNA, gp2.5 physically interacts with T7 DNA polymerase and T7 primase-helicase during replication to coordinate events at the replication fork. We have determined a 1.9-A crystal structure of gp2.5 and show that i...
متن کاملMechanisms of a ring shaped helicase
Bacteriophage T7 helicase (T7 gene 4 helicase-primase) is a prototypical member of the ring-shaped family of helicases, whose structure and biochemical mechanisms have been studied in detail. T7 helicase assembles into a homohexameric ring that binds single-stranded DNA in its central channel. Using RecA-type nucleotide binding and sensing motifs, T7 helicase binds and hydrolyzes several NTPs, ...
متن کاملThe N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities
The TWINKLE protein is a hexameric DNA helicase required for replication of mitochondrial DNA. TWINKLE displays striking sequence similarity to the bacteriophage T7 gene 4 protein (gp4), which is a bi-functional primase-helicase required at the phage DNA replication fork. The N-terminal domain of human TWINKLE contains some of the characteristic sequence motifs found in the N-terminal primase d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 21 شماره
صفحات -
تاریخ انتشار 2004